

Max. Marks: 60 5 x 12 = 60 Marks

5 M

7 M

2	a Using algebra of propositions, show that $P \Leftrightarrow Q \equiv (P \lor Q) \Rightarrow P \land Q$	7 M
	b $O(x)$ b $D(y) = 1 O(y) = ((x - y) - y)$	5 3 6

b Obtain DNF and CNF for $\neg (\neg (P \Box Q) \land R)$ 5 M UNIT-II

a Let $f: X \to Y$ be an everywhere defined invertible function A and B be arbitrary 3 6 M non-empty subsets of Y. Show that (i) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$

$$(ii) f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

- **b** Define and give an example for group, semigroup, subgroup and abelian group. 6 M OR
- 4 **a** Define primitive recursive function. Show that the function f(X, Y) = X + Y is 7 M primitive recursive.
 - **b** On the set Q of all rational numbers with operation * is defined by a*b=a+b-ab. 5 M Show that this operation on Q forms a commutative monoid.

UNIT-III

- 5 **a** Find the integral solutions to $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ where each (i) $x_i \ge 2$ (ii) $x_i > 2$ 6 M **b** Out of 80 students in a class, 60 play football, 53 play hockey, and 35 both the 6 M games. How many students (i) do not play of these games.
 - (ii) play only hockey but not foot ball

OR

a How many permutations can be formed out of the letters of word "SUNDAY". How 6 M 6 many of these (i) Begin with S (ii) End with Y

(*iii*) Begin with S and end with Y (iv) S &Y always to gather.

b Obtain the co-efficient of (i)
$$x^3 y^7$$
 in $(x+y)^{10}$ (ii) $x^2 y^4$ in $(x-2y)^6$ 6 M
UNIT-IV

7 **a** Solve the recurrence relation by substitution
$$a_n = a_{n-1} + \frac{1}{n(n+1)}$$
, where $a_0 = 1$ 7 M

b Show that
$$a_n = -2^{n+1}$$
 is a solution of the linear recurrence relation $a_n = 3a_{n-1} + 2^n$ 5 M **OR**

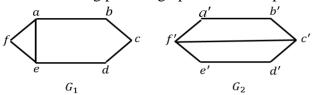
- **a** Solve the recurrence relation $a_n = a_{n-1} + 2$, for $n \ge 2$ with initial condition $a_1 = 3$ 8 5 M
 - **b** Apply the generating function technique to solve the recurrence relation 7 M $a_{n+2} + 2a_{n+1} + a_n = 1 + n$

UNIT-V

- a Show that the maximum number of edges in a simple graph with n vertices is 9 6 M n(n-1)2
 - ${\bf b}~$ Draw the graph represented by given Adjacency matrix

									OR
	1	0	1	0		1	2	0	1
(1)	0	3	1	1	(ii)	2	1	1	0
(i)	2	0	3	1 0 1 0]		0	1	1	1 2 0 1
	[1	2	0	1]		[1	0	2	1

- \mathbf{a} A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3. 10 6 M Find the number of vertices in G. 6 M
 - **b** Is the following pairs of graphs are isomorphic or not?



*** END ***

6 M